PHYSICAL CHEMISTRY

DPP No. 37

Total Marks: 24

Max. Time: 24 min.

Topic: Chemical Equilibrium

M.M., Min. Type of Questions (3 marks, 3 min.) [24, 24]

Single choice Objective ('-1' negative marking) Q.1 to Q.8

- 4NH₃ + 5O₂ ← 4NO + 6H₂O, the equilibrium constant 1. For the homogeneous gaseous reaction: K has the units of:
 - (A) (Conc.)-10
- (B) (Conc.)1
- (C) (Conc.)-1
- (D) It is dimensionless.
- 2. Select the gaseous reaction for which the equilibrium constant is written as: [MX₂]² = K[MX₂]² [X₂]
 - (A) $MX_3 \rightleftharpoons MX_2 + \frac{1}{2}X_2$

(B) $2MX_3 \rightleftharpoons 2MX_2 + X_2$

(C) $2MX_2 + X_2 \rightleftharpoons 2MX_3$

- (D) $MX_2 + \frac{1}{2}X_2 \iff MX_3$.
- 3. In order to increase the rate of forward reaction : $2A(g) + 3B(g) \Longrightarrow Product$, 32 times, it is necessary to
 - (A) Make the conc. of A and B three times
- (B) Make the conc. of A and B two times
- (C) Make the conc. of A and B half
- (D) Make the conc. of A and B four times
- 4. For the reaction, A + 2B = 2C, the rate constants for the forward and the backward reactions are 1×10^{-4} and 2.5×10^{-2} respectively. The value of equilibrium constant, K for the reaction would be :
 - (A) 1×10^{-4}
- (B) 2.5×10^{-2}
- (C) 4×10^{-3}
- (D) 2.5×10^2
- 5. An equilibrium system for the reaction between hydrogen and iodine to give hydrogen iodide at 765 K in a 5 litre volume contains 0.4 mole of hydrogen, 0.4 mole of iodine and 2.4 moles of hydrogen iodide. The equilibrium constant for the reaction is : $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$
 - (A) 36
- (B) 15
- (C) 0.067
- (D) 0.28.
- 6. For a gasesous reaction, 2A + B \Rightharpoonup 2C, the partial pressures of A, B and C at equilibrium are 0.3 atm, 0.4 atm and 0.6 atm respectively. The value of $K_{\scriptscriptstyle D}$ for the reaction would be :
 - (A) 10 atm-1
- (B) 1/10 atm-1
- (C) 0.2 atm-1
- (D) 5 atm-1
- The active mass of 64 g of HI in a two litre flask would be : 7.
 - (A) 2
- (B) 1
- (C)5
- (D) 0.25
- 8. For the reaction, A + B \Longrightarrow 3 C, if 'a' moles/litre of each 'A' & 'B' are taken initially, then the incorrect relation about concentrations at equilibrium is:
 - (A) [A] [B] = 0
- (B) 3[B] + [C] = 3a
- (C) 3 [A] + [C] = 3a
- (D) [A] + [B] = 3[C]

Answer Key

DPP No. #37

(B)

1. (B)

2.

(C)

3.

4. (C)

. (A)

6. (A)

7.

(D)

8. (D)

Hints & Solutions

DPP No. #37

5.
$$H_2 + I_2 \rightleftharpoons 2HI$$

0.4 0.4 2.4

$$K = \frac{2.4 \times 2.4}{0.4 \times 0.4} = 36$$

(Since volume term is cancelled)

[HI] =
$$\frac{0.5}{2}$$
 M = 0.25 M